根据世界卫生组织的最新统计,全世界每年新发结核病病例从900万增加至1400万,每年死亡140-150万人(2015年死亡180万人)。结核病(tuberculosis,TB)是由结核分枝杆菌( Mycobacterium tuberculosis, Mtb)引发的主要通过呼吸传播的致死性传染病,旧称痨病。自上个世纪80年代末,由于对结核病防控工作的忽视、人口流动的增加、Mtb与HIV共感染,耐多药、广泛耐药、甚至是完全耐药结核病的出现,使结核病在全球范围内死灰复燃。
近日,中国科学院广州生物医药与健康研究院、呼吸疾病国家重点实验室结核病研究室的张天宇课题组发现Rv2783c编*****的一个双功能酶可能是PZA的新靶标,相关研究成果Pyrazinoic Acid Inhibits a Bifunctional Enzyme in Mycobacterium tuberculosis 于4月24日发表于美国微生物协会主办的Antimicrobial Agents and Chemotherapy(DOI: 10.1128/AAC.00070-17)。该论文的第一作者为广州生物院国际留学生Moses Njire,第二作者为王娜。
吡嗪酰胺(Pyrazinamide,简称PZA)是最独特的抗TB药物,其自身的抗结核病活性不明显,但是添加到一线药物中,可以缩短疗程3个月以上,明显减低复发率。许多含有二线药物和最近上市的新药的疗法只有与PZA联合使用,其作用效果才明显。因此,PZA对于治疗结核病,特别是耐药TB具有重要意义。PZA的作用机制一直是个谜。目前明确的是PZA是个前药,需要经过Mtb的吡嗪酰胺酶(PZase)的催化才能成为有活性的药物吡嗪酰酸(pyrazinoic acid,POA),可是其靶扑朔迷离。直到2011年发表在Science 一篇文章才发现核糖体蛋白RpsA可能是PZA的作用靶标,提出POA是通过抑制反式翻译来促进杀灭Mtb,特别是处于持留(persistence)状态Mtb的。持留是一种致病菌普遍存在的现象,即在治疗过程中,细菌表型耐药,很难被清除,但是并未发生基因突变。抗生素解除后,这些菌重新长起来后对同样的抗生素仍然敏感。
研究团队发现,过表达突变的Rv2783c基因可以导致Mtb对PZA耐药;POA可以与Rv2783蛋白结合,但是PZA不与之结合,同时POA也不与Rv2783蛋白结合;首次证实了基因Rv2783c编*****的Rv2783蛋白具有聚核苷酸磷酸化酶(PNPase)功能和鸟苷五磷酸合成酶(GPS I) 活性(如图所示)。在研究PNPase功能时,研究组开创性地探索新的分析方法并取得成功。其结果显示,Rv2783蛋白具有不依赖模板而合成ssDNA和RNA的功能,同时具有降解ssDNA和RNA的功能。GPS I功能主要负责水解而非合成(p)ppGpp。POA可以干扰这些功能而PZA本身并不干扰这些功能。这些功能是Mtb存活,特别是在逆境存活的重要生理保障。POA干扰DNA修复,或者干扰各种RNA的稳定性,甚至是合成错误的RNA进而合成突变的蛋白可能很好解释“持留(persistence)”现象,即群体中只有小部细菌因为产生了突变的蛋白从而表型耐药(对药物耐受),但是它们的基因组并未发生改变。另外,Rv2783也可能是通过抑制结核菌水解(p)ppGpp从而阻止结核菌从逆境中恢复过来而杀死处于持留状态的结核菌。研究结果显示该蛋白很可能是PZA的新靶标。
该研究有助于揭示持留菌(特别是持留Mtb)形成机制,为研发新型抗TB药物及新疗法提供理论基础。同时,可能为诊断PZA的敏感性提供新分子标记,也可能为研制更好的PZA敏感性检测技术提供有益启示。该研究受到了国家自然科学基金、中科院项目、UCAS奖学金、CAS-TWAS奖学金、广州市科技计划项目以及呼吸疾病国家重点实验室项目的支持。
广州生物院发现抗结核一线药物吡嗪酰胺的新靶标愚愚学园
www.SciFans.net