级别: 院长

UID: 69801
精华: 1
发帖: 3205
威望: 30 点
积分转换
愚愚币: 4391 YYB
在线充值
贡献值: 0 点
在线时间: 6701(小时)
注册时间: 2009-05-28
最后登录: 2017-09-13
楼主  发表于: 2011-04-25 02:02

 Probing Nanotube Photochemical Properties

管理提醒: 本帖被 silverks 执行加亮操作(2011-04-26)
Researchers in South Korea have obtained data that questions key assumptions about the photochemical properties of semiconductor nanotubes.

The work suggests that seemingly promising strategies for using nanotubes to boost the performance of solar cells and photocatalysts based on titanium dioxide, a well-studied candidate for those applications, may be less effective than expected. The study also identifies directions for follow-up investigations.

The study was presented at the American Chemical Society meeting in the Division of Fuel Chemistry at a symposium on solar energy conversion and has just been published in the Journal of Physical Chemistry C (DOI: 10.1021/jp201215t).

Compared with pure TiO2 nanoparticles, TiO2 nanotubes and nanotubes made from TiO2 hybridized with iron oxide are predicted to exhibit enhanced photo properties as a result of increased light scattering from the tubes' internal surfaces and broader light harvesting capabilities of the hybrid.

Tae Hwa Jeon and Hyunwoong Park of Kyungpook National University in Daegu, and coworkers, examined that prediction for the iron oxide-based nanotubes by preparing unhybridized TiO2 nanotubes and hybridized nanotubes with nanocrystalline hematite (α-Fe2O3) particles deposited on their rims or filling the nanotubes completely. The team used those materials as well as TiO2 nanoparticle films and other control samples to measure photocurrents generated in electrolyte solution under standard conditions. They used the same materials in a separate set of experiments to measure the rate of photocatalytic decomposition of phenol.

The key result reported by the group is that nanotubes containing hematite—especially rim-coated nanotubes, in which the interior tube surface remains exposed and available to mediate reactions—are far less active photochemically than uncoated samples.

"It's a surprising result that suggests that the interior surface of these nanotubes is not as photoactive as people would think," says Chad D. Vecitis, a Harvard University professor of environmental engineering. He adds that the work is likely "to bring up a new discussion and help push investigations in a direction that will provide answers."

Park proposed that the unexpectedly low activity could result from hematite-induced charge recombination, a process in which excitations induced by photons are quickly quenched by charge transfer at the hematite-nanotube interface. He added that a telling follow-up experiment, one that would home in on the photoactivity of the nanotubes' internal surfaces, would be to repeat the measurements—this time using nanotubes that have been selectively hybridized with photoinactive materials.

分享:

愚愚学园属于纯学术、非经营性专业网站,无任何商业性质,大家出于学习和科研目的进行交流讨论。

如有涉侵犯著作权人的版权等信息,请及时来信告知,我们将立刻从网站上删除,并向所有持版权者致最深歉意,谢谢。