近年来,随着网络信息技术的不断发展与进步,网民数量激增,网络覆盖率日益增高。互联网行业发展迅速,购物、出行、医疗、教育等生产生活中的方方面面都有着“互联网+”的影子。在这个网络化、信息化的时代,网络技术已经在潜移默化地影响着、改变着人们的生活方式与思想观念。“信息过载”一词频繁出现在人们的视野中,它成为了计算机相关领域中的热门词汇,同时它也是研究人员急待解决的重要问题。
为解决信息超载的问题,计算机领域研究人员不断优化个性化推荐算法,力求降低用户的信息检索难度,为用户提供最优的个性化推荐结果。在汉斯出版社《数据挖掘》期刊中,有论文对于应用范围较广、较为常见的个性化推荐方法做出简要的概述,并结合日常生活中使用个性化推荐算法生成结果的经历,对未来个性化推荐算法的发展提出期望。
基于信息超载的情况,个性化推荐算法应运而生。个性化推荐系统通过挖掘用户在网络上留下的“信息足迹”,采集并分析用户的网络行为与消费偏好,根据不同的推荐算法将精准的、契合度高的内容推荐给用户。个性化推荐算法的产生与发展极大地便利了人们的生产与生活,对于用户而言,不用再为在海量的信息中检索需要的内容而苦恼,对于商家而言能够更好地分析用户行为,提高竞争力与实现经济效益的最大化增长。
个性化推荐方法分为协同过滤推荐、基于内容的推荐以及混合推荐。协同过滤推荐主要思想是通过现有的用户群以往的意见和行为,对当前用户最有可能感兴趣的物品进行预测。基于内容推荐是指通过掌握的物品特征的描述和描述了用户历史兴趣的记录,确定最能匹配用户喜爱的物品并推荐给用户。混合推荐算法来提高推荐结果的准确程度,是为克服协同过滤算法、基于内容算法等其他算法的局限性、提高个性化推荐结果的精准度,研究者将两种以上算法和模型的优点结合在一起,提出一种新的个性化推荐算法。
个性化推荐算法发展至今已经有十多年的历史了,科研人员不断致力于探索更加高效的推荐算法。但是现在的个性化推荐技术仍有不完善之处。从用户角度来看,应从多角度考虑用户行为信息、细化商品类别、推荐结果更注重时效性、推荐结果质量更高、推荐内容更多样化、预测结果更准确等这几个角度出发,对个性化推荐系统有着更多的期待。
个性化推荐算法的应用范围不断扩大,包括电子商务网站、娱乐网站、社交网站等许多方面。作为一个不断创新的领域,人们对个性化推荐算法的期望也在不断提高。在不断创新发展的过程中,个性化推荐系统会更好地服务于人们的生活,提高用户生活质量和互联网产品的效益。