级别: 院长

UID: 69801
精华: 1
发帖: 3205
威望: 30 点
积分转换
愚愚币: 4391 YYB
在线充值
贡献值: 0 点
在线时间: 6701(小时)
注册时间: 2009-05-28
最后登录: 2017-09-13
楼主  发表于: 2010-12-27 00:54

 New Rubber Beats Heat And Cold

管理提醒: 本帖被 chenshuuu 执行加亮操作(2010-12-27)
Carbon nanotubes are taking rubbery behavior to new extremes. A novel rubberlike material made from long, tangled strands of single-, double-, and triple-walled carbon nanotubes (CNTs) maintains its viscoelasticity at temperatures as low as –196 °C and as high as 1,000 °C in an oxygen-free environment (Science, DOI: 10.1126/science.1194865).

Most rubbery materials, in contrast, turn brittle in the cold and degrade when things heat up. Because of its temperature-invariant viscoelasticity, the CNT-based material could find use in vehicles that travel to the cold reaches of interstellar space. It could also be used inside high-vacuum furnaces, where it could take the heat without running the risk of reacting with oxygen.

A team led by Don N. Futaba, Kenji Hata, and Ming Xu of the Nanotube Research Center at Japan’s National Institute of Advanced Industrial Science & Technology (AIST) created the CNT-based material using a combination of water-assisted chemical vapor deposition, reactive ion etching of the catalyst film used to grow the nanotubes, and compression.

When the researchers characterized the material, they observed that the tubes are tangled in such a way that they make numerous short contacts with one another. The scientists believe that the material’s thermal stability arises from the fact that the tubes can zip and unzip at those contact points.

In polymeric rubbers, viscoelasticity is typically governed by the arrangement of polymer chains. High temperature breaks these arrangements, and the materials degrade. The researchers believe that in the CNT-based material, the energy from heat goes into overcoming the large van der Waals attraction between the CNTs, resulting in an unzipping of the contact points. Virtually no energy, however, is required for zipping, so this process acts like a heat pump.

Yury Gogotsi, an engineering professor at Drexel University, calls the results “exciting.” Although carbon-based materials possess many extreme properties, he says, “this work uncovers another example of extreme performance of a carbon material that no other solid has shown so far.”

Chemical & Engineering News
本帖最近评分记录:
  • 愚愚币:+10(small) 谢谢分享
  • 分享:

    愚愚学园属于纯学术、非经营性专业网站,无任何商业性质,大家出于学习和科研目的进行交流讨论。

    如有涉侵犯著作权人的版权等信息,请及时来信告知,我们将立刻从网站上删除,并向所有持版权者致最深歉意,谢谢。