级别: 院长

UID: 69801
精华: 1
发帖: 3205
威望: 30 点
积分转换
愚愚币: 4391 YYB
在线充值
贡献值: 0 点
在线时间: 6701(小时)
注册时间: 2009-05-28
最后登录: 2017-09-13
楼主  发表于: 2010-10-23 07:51

 Following The Flow In Microchannels

Detailed information about chemistry and fluid flow within microscopic structures such as microfluidic channels or blood vessels is now possible using a remote-detection approach to magnetic resonance imaging or nuclear magnetic resonance spectroscopy (Science, DOI: 10.1126/science.1192313). Developed in the lab of Alexander Pines at the University of California, Berkeley, remote detection involves encoding magnetic resonance information into the nuclear spins of the ytes flowing through a microfluidic channel or other structure. The information is then read at a detector stationed at the channel outlet. Pines, Vikram S. Bajaj, and colleagues have now extended the technique to enable the use of a standard macroscopic magnetic coil to obtain information on the flow and velocity of liquids in microfluidic devices down to a spatial resolution of 15 μm—something that previously would have required stationing microscopic coils along the device channels. This approach may also be used to obtain flow information for fluids in microporous materials or in blood vessels in vivo, the researchers say, or NMR chemical shifts for compounds involved in high-throughput studies of cellular metaboli or in all-molecule screening.

本帖最近评分记录:
  • 愚愚币:+10(small) 谢谢分享
  • 分享:

    愚愚学园属于纯学术、非经营性专业网站,无任何商业性质,大家出于学习和科研目的进行交流讨论。

    如有涉侵犯著作权人的版权等信息,请及时来信告知,我们将立刻从网站上删除,并向所有持版权者致最深歉意,谢谢。