级别: 院长
UID: 117704
精华: 0
发帖: 1281
威望: 15 点
积分转换
愚愚币: 132 YYB
在线充值
贡献值: 0 点
在线时间: 98(小时)
注册时间: 2012-11-08
最后登录: 2022-08-22
楼主  发表于: 2017-07-03 10:59

 新光学芯片可实现高效“深度学习”

愚愚学园www.SciFans.net温馨提示:
美国麻省理工学院(MIT)科学家在12日出版的《自然光学》杂志上发表论文称,他们开发出一种全新的光学神经网络系统,能执行高度复杂的运算,从而大大提高深度学习系统的运算速度和效率。

    深度学习系统通过人工神经网络模拟人脑的学习能力,现已成为计算机领域的研究热门。但由于在模拟神经网络任务中,需要执行大量重复性矩阵乘法类高度复杂的运算,对于依靠电力运行的传统CPU(中央处理器)或GPU(图形处理器)芯片来说,这类运算太过密集,完成起来非常吃力。

    通过几年努力,MIT教授马林索尔贾希克和同事开发出光学神经网络系统的重要部件全新可编程纳米光学处理器,这些光学处理器能在几乎零能耗的情况下执行人工智能中的复杂运算。索尔贾希克解释道,普通眼镜片就能通过光波执行傅里叶变换这样的复杂运算,可编程纳米光学处理器采用了同样的原理,其包含多个激光束组成的波导矩阵,这些光波能相互作用,形成干涉模式,从而执行特定的目标运算。

    研究小组通过测试证明,与CPU等电子芯片相比,这种光学芯片执行人工智能算法速度更快,且消耗能量不到传统芯片能耗的千分之一。他们还用可编程纳米光学处理器构建了一个神经网络初级系统,该系统能识别出4个元音字母的发音,准确率达到77%。他们的最终目标是,将可编程纳米光学处理器交叉铺成多层结构,构建光学网络神经系统,模拟人脑中神经元执行复杂的深度学习运算。

    索尔贾希克表示,新光学处理器还能用于数据传输中的信号处理,更快速实现光学信号与数字信号间的转换。未来,在大数据中心、安全系统、自动驾驶或无人机等所有低能耗应用中,基于新光学处理器的复杂光学神经网络将占据重要席位。(来源:科技日报 聂翠蓉)

    

    

    

    特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的来源,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
分享:

愚愚学园属于纯学术、非经营性专业网站,无任何商业性质,大家出于学习和科研目的进行交流讨论。

如有涉侵犯著作权人的版权等信息,请及时来信告知,我们将立刻从网站上删除,并向所有持版权者致最深歉意,谢谢。