级别: 院长

UID: 69801
精华: 1
发帖: 3205
威望: 30 点
积分转换
愚愚币: 4391 YYB
在线充值
贡献值: 0 点
在线时间: 6701(小时)
注册时间: 2009-05-28
最后登录: 2017-09-13
楼主  发表于: 2011-05-05 00:35

 原子力显微镜各种成像模式的原理

1. 原子力显微镜的基本原理
原子力显微镜的基本原理是:将一个对微弱力极敏感的微悬臂一端固定,另一端有一微
小的针尖,针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱
的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表
面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道
电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的
信息。下面,我们以激光检测原子力显微镜(Atomic Force Microscope Employing
Laser Beam Deflection for Force Detection, Laser-AFM)——扫描探针显微镜家族
中最常用的一种为例,来详细说明其工作原理。



图1. 激光检测原子力显微镜探针工作示意图




如图1所示,二极管激光器(Laser Diode)发出的激光束经过光学系统聚焦在微悬臂(
C
antilever)背面,并从微悬臂背面反射到由光电二极管构成的光斑位置检测器(
Detect
or)。在样品扫描时,由于样品表面的原子与微悬臂探针尖端的原子间的相互作用力,
微悬臂将随样品表面形貌而弯曲起伏,反射光束也将随之偏移,因而,通过光电二极管
检测光斑位置的变化,就能获得被测样品表面形貌的信息。

在系统检测成像全过程中,探针和被测样品间的距离始终保持在纳米(10e-9米)量级,
距离太大不能获得样品表面的信息,距离太小会损伤探针和被测样品,反馈回路(
Feedba
ck)的作用就是在工作过程中,由探针得到探针-样品相互作用的强度,来改变加在样品
扫描器垂直方向的电压,从而使样品伸缩,调节探针和被测样品间的距离,反过来控制
探针-样品相互作用的强度,实现反馈控制。因此,反馈控制是本系统的核心工作机制。


本系统采用数字反馈控制回路,用户在控制软件的参数工具栏通过以参考电流、积分增
益和比例增益几个参数的设置来对该反馈回路的特性进行控制。





2. 原子力显微镜的硬件结构

在原子力显微镜(Atomic Force Microscopy,AFM)的系统中,可分成三个部分:力检
测部分、位置检测部分、反馈系统。



图2、原子力显微镜(AFM)系统结构




2.1 力检测部分
在原子力显微镜(AFM)的系统中,所要检测的力是原子与原子之间的范德华力。所以在
本系统中是使用微小悬臂(cantilever)来检测原子之间力的变化量。微悬臂通常由一
个一般100~500μm长和大约500nm~5μm厚的硅片或氮化硅片制成。微悬臂顶端有一个尖
锐针尖,用来检测样品-针尖间的相互作用力。这微小悬臂有一定的规格,例如:长度
、宽度、弹性系数以及针尖的形状,而这些规格的选择是依照样品的特性,以及操作模
式的不同,而选择不同类型的探针。

以下是一种典型的AFM悬臂和针尖:





2.2 位置检测部分
在原子力显微镜(AFM)的系统中,当针尖与样品之间有了交互作用之后,会使得悬臂
ca
ntilever摆动,所以当激光照射在微悬臂的末端时,其反射光的位置也会因为悬臂摆动
而有所改变,这就造成偏移量的产生。在整个系统中是依靠激光光斑位置检测器将偏移
量记录下并转换成电的信号,以供SPM控制器作信号处理。




上图是激光位置检测器的示意图。聚焦到微悬臂上面的激光反射到激光位置检测器,通
过对落在检测器四个象限的光强进行计算,可以得到由于表面形貌引起的微悬臂形变量
大小,从而得到样品表面的不同信息。



2.3 反馈系统
在原子力显微镜(AFM)的系统中,将信号经由激光检测器取入之后,在反馈系统中会将
此信号当作反馈信号,作为内部的调整信号,并驱使通常由压电陶瓷管制作的扫描器做
适当的移动,以保持样品与针尖保持一定的作用力。

AFM系统使用压电陶瓷管制作的扫描器精确控制微小的扫描移动。压电陶瓷是一种性能奇
特的材料,当在压电陶瓷对称的两个端面加上电压时,压电陶瓷会按特定的方向伸长或
缩短。而伸长或缩短的尺寸与所加的电压的大小成线性关系。也就是说,可以通过改变
电压来控制压电陶瓷的微小伸缩。通常把三个分别代表X,Y,Z方向的压电陶瓷块组成三
角架的形状,通过控制X,Y方向伸缩达到驱动探针在样品表面扫描的目的;通过控制Z方
向压电陶瓷的伸缩达到控制探针与样品之间距离的目的。



原子力显微镜(AFM)便是结合以上三个部分来将样品的表面特性呈现出来的:在原子力

显微镜(AFM)的系统中,使用微小悬臂(cantilever)来感测针尖与样品之间的相互作
用,这作用力会使微悬臂摆动,再利用激光将光照射在悬臂的末端,当摆动形成时,会
使反射光的位置改变而造成偏移量,此时激光检测器会记录此偏移量,也会把此时的信
号给反馈系统,以利于系统做适当的调整,最后再将样品的表面特性以影像的方式给呈
现出来。



3.原子力显微镜的工作模式
原子力显微镜的工作模式是以针尖与样品之间的作用力的形式来分类的。主要有以下几
种:

3.1 接触模式





将一个对微弱力极敏感的微悬臂的一端固定,另一端有一微小的针尖,针尖与样品表面
轻轻接触。由于针尖尖端原子与样品表面原子间存在极微弱的排斥力(10e-8~10e-6N)
,由于样品表面起伏不平而使探针带动微悬臂弯曲变化,而微悬臂的弯曲又使得光路发
生变化,使得反射到激光位置检测器上的激光光点上下移动,检测器将光点位移信号转
换成电信号并经过放大处理,由表面形貌引起的微悬臂形变量大小是通过计算激光束在
检测器四个象限中的强度差值(A+B)-(C+D)得到的。将这个代表微悬臂弯曲的形变信
号反馈至电子控制器驱动的压电扫描器,调节垂直方向的电压,使扫描器在垂直方向上
伸长或缩短,从而调整针尖与样品之间的距离,使微悬臂弯曲的形变量在水平方向扫描
过程中维持一定,也就是使探针-样品间的作用力保持一定。在此反馈机制下,记录在
垂直方向上扫描器的位移,探针在样品的表面扫描得到完整图像之形貌变化,这就是接
触模式。



3.2 横向力(摩擦力)显微镜(LFM)




横向力显微镜(LFM)是在原子力显微镜(AFM)表面形貌成像基础上发展的新技术之一
。工作原理与接触模式的原子力显微镜相似。

当微悬臂在样品上方扫描时,由于针尖与样品表面的相互作用,导致悬臂摆动,其摆动
的方向大致有两个:垂直与水平方向。一般来说,激光位置探测器所探测到的垂直方向
的变化,反映的是样品表面的形态,而在水平方向上所探测到的信号的变化,由于物质
表面材料特性的不同,其摩擦系数也不同,所以在扫描的过程中,导致微悬臂左右扭曲
的程度也不同,检测器根据激光束在四个象限中,(A+C)-(B+D)这个强度差值来检测
微悬臂的扭转弯曲程度。而微悬臂的扭转弯曲程度随表面摩擦特性变化而增减(增加摩
擦力导致更大的扭转)。激光检测器的四个象限可以实时分别测量并记录形貌和横向力
数据。



3.3 轻敲模式



用一个小压电陶瓷元件驱动微悬臂振动,其振动频率恰好高于探针的最低机械共振频率
(~50kHz)。由于探针的振动频率接近其共振频率,因此它能对驱动信号起放大作用。
当把这种受迫振动的探针调节到样品表面时(通常2~20nm),探针与样品表面之间会产
生微弱的吸引力。在半导体和绝缘体材料上的这一吸引力,主要是凝聚在探针尖端与样
品间水的表面张力和范德华吸引力。虽然这种吸引力比在接触模式下记录到的原子之间
的斥力要小一千倍,但是这种吸引力也会使探针的共振频率降低,驱动频率和共振频率
的差距增大,探针尖端的振幅减少。这种振幅的变化可以用激光检测法探测出来,据此
可推出样品表面的起伏变化。

当探针经过表面隆起的部位时,这些地方吸引力最强,其振幅便变小;而经过表面凹陷
处时,其振幅便增大,反馈装置根据探针尖端振动情况的变化而改变加在Z轴压电扫描器
上的电压,从而使振幅(也就是使探针与样品表面的间距)保持恒定。同STM和接触模式
AFM一样,用Z驱动电压的变化来表征样品表面的起伏图像。

在该模式下,扫描成像时针尖对样品进行“敲击”,两者间只有瞬间接触,克服了传统
接触模式下因针尖被拖过样品而受到摩擦力、粘附力、静电力等的影响,并有效的克服
了扫描过程中针尖划伤样品的缺点,适合于柔软或吸附样品的检测,特别适合检测有生
命的生物样品。



3.4 相移模式
作为轻敲模式的一项重要的扩展技术,相移模式是通过检测驱动微悬臂探针振动的信号
源的相位角与微悬臂探针实际振动的相位角之差(即两者的相移)的变化来成像。

引起该相移的因素很多,如样品的组分、硬度、粘弹性质等。因此利用相移模式,可以
在纳米尺度上获得样品表面局域性质的丰富信息。迄今相移模式已成为原子力显微镜的
一种重要检测技术。

 








3.5 曲线测量
SFM除了形貌测量之外,还能测量力对探针-样品间距离的关系曲线Zt(Zs)。它几乎包
含了所有关于样品和针尖间相互作用的必要信息。当微悬臂固定端被垂直接近,然后离
开样品表面时,微悬臂和样品间产生了相对移动。而在这个过程中微悬臂自由端的探针
也在接近、甚至压入样品表面,然后脱离,此时原子力显微镜(AFM)测量并记录了探针
所感受的力,从而得到力曲线。Zs是样品的移动,Zt是微悬臂的移动。这两个移动近似
于垂直于样品表面。用悬臂弹性系数c乘以Zt,可以得到力F=c·Zt。如果忽略样品和针
尖弹性变形,可以通过s=Zt-Zs给出针尖和样品间相互作用距离s。这样能从Zt(Zs)曲
线决定出力-距离关系F(s)。这个技术可以用来测量探针尖和样品表面间的排斥力或长
程吸引力,揭示定域的化学和机械性质,像粘附力和弹力,甚至吸附分子层的厚度。如
果将探针用特定分子或基团修饰,利用力曲线分析技术就能够给出特异结合分子间的力
或键的强度,其中也包括特定分子间的胶体力以及疏水力、长程引力等。



3.6 纳米加工
扫描探针纳米加工技术是纳米科技的核心技术之一,其基本的原理是利用SPM的探针-样
品纳米可控定位和运动及其相互作用对样品进行纳米加工操纵,常用的纳米加工技术包
括:机械刻蚀、电致/场致刻蚀、浸润笔(Dip-Pen Nano-lithography,DNP)等。

我公司的图形化纳米加工系统采用的是纳米加工中的电致刻蚀方法,电致刻蚀主要由施
加在探针与样品表面间的一个短的偏压脉冲引起,当所加电压超过阈值时,暴露在电场
下的样品表面会发生化学或物理变化。这些变化或者可逆或者不可逆,其机理可以直接
归因于电场效应,高度局域化的强电场可以诱导原子的场蒸发,也可以由电流焦耳热或
原子电迁移引起样品表面的变化。通过控制脉冲宽度和脉幅可以限制刻蚀表面的横向分
辨率,这些变化通常并不引起很明显的表面形貌变化,然而检测其导电性、dI/dS、dI/
d
V、摩擦力可以清晰地分辨出衬底的修饰情况。

图形刻蚀模式:通过加载图图案或者图形文件,设定相应的加工参数,系统自动控制探
矢量扫描模式:系统提供一个向量脚本编译器,允许用户任意指定扫描方向、距离、速
度及加工参数(如作用力、电流、电压等),直接操纵探针运动,同时灵活测定各种信
号和数据。


分享:

愚愚学园属于纯学术、非经营性专业网站,无任何商业性质,大家出于学习和科研目的进行交流讨论。

如有涉侵犯著作权人的版权等信息,请及时来信告知,我们将立刻从网站上删除,并向所有持版权者致最深歉意,谢谢。