如果癌症治疗能像计算机程序那样,根据条件执行任务,结果会怎样呢?物理学家组织网近日报道,加州理工学院的研究人员开发出一种小条件性RNA(核糖核酸)分子,它可以按照“如果……只有……才……”的逻辑命令来杀死变异细胞,极大程度地减轻了癌症治疗的副作用,研究论文发表在9月6日的美国《国家科学院院刊》(PNAS)上。
癌症是环境和遗传因素双重作用的“产儿”,且每种癌症都很独特,所以很难治疗。传统化疗是通过假定一种或者多种药物既能识别,又能杀死癌细胞来治疗癌症的。而事实上,药物的选择性很有限,化疗还会带来很多副作用,比如经常服用一种瞄准快速增生的肿瘤细胞的化疗药物会导致脱发,因为头发毛囊细胞是人体中生长最快的细胞之一,癌症药物的识别往往会“张冠李戴”。
研究人员演示了小条件性RNA分子有选择地杀死癌细胞的过程,结果表明,这种分子可有效地消除实验室培养的脑癌、前列腺癌和骨癌细胞,而没有癌变的细胞数量并无明显减少。论文合着者尼尔斯·皮尔斯说,这种分子能测出癌细胞的内部变异,然后在其内部激活治疗反应,而在没有癌变的细胞中保持沉默。
RNA在细胞中执行各种功能,包括作为信使,交流转换、监控以及在某些时候表达基因等。一般基因平均有数千个碱基对,一种长度小于30个碱基对的特殊RNA称为小RNA,许多生命过程都离不开它们。和DNA(脱氧核糖核酸)相比,RNA相对短命,但其编*****系统却存储了人体中几乎每个细胞的完整基因组的全部备份。
研究人员从结构上模拟人体细胞产生的小RNA,研究出一种包含两个独立小RNA的小条件性RNA分子。如果将特征标记植入这种RNA中,就能将识别和治疗过程分开,让其具有高选择性和高效杀死癌细胞的能力。第一个小RNA开启“如果……只有……才……”程序,诊断癌症变异,发现癌变后才释放出一种事先隐藏在小RNA中的信号,使另一个小RNA和它连接起来,引发连环反应。然后,这些RNA分子开始持续不断地生成长链。分子链越长,就越容易诱发细胞产生病毒入侵的免疫应答,从而进入自我毁灭程序。
皮尔斯说,从概念上讲,小条件性RNA改变了癌症治疗的前景,因为它是从分子水平来改变治疗,但其治疗效果还要通过实验进一步确定。
这项研究是国家科学基金会计算机、信息科学与工程理事会资助的“分子规划项目”的一部分,其目标之一就是研究生物分子如何存储和处理信息以及怎样在实际中应用这些信息等,研究的核心就是RNA
Selective cell death mediated by all conditional RNAs
Suvir Venkataramana, Robert M. Dirksa,b, Christine T. Uedab, and Niles A. Piercea,c,1
aDepartment of Bioengineering;
bDepartment of Chemistry; and
cDepartment of Applied and Computational Mathematics, California Institute of Technology, Pasadena, CA 91125
Cancer cells are characterized by genetic mutations that deregulate cell proliferation and suppress cell death. To arrest the uncontrolled replication of malignant cells, conventional chemotherapies systemically disrupt cell division, causing diverse and often severe side effects as a result of collateral damage to normal cells. Seeking to address this shortcoming, we pursue therapeutic regulation that is conditional, activating selectively in cancer cells. This functionality is achieved using all conditional RNAs that interact and change conformation to mechanically transduce between detection of a cancer mutation and activation of a therapeutic pathway. Here, we describe all conditional RNAs that undergo hybridization chain reactions (HCR) to induce cell death via an innate immune response if and only if a cognate mRNA cancer marker is detected within a cell. The sequences of the all conditional RNAs can be designed to accept different mRNA markers as inputs to HCR transduction, providing a programmable framework for selective killing of diverse cancer cells. In cultured human cancer cells (glioblastoma, prostate carcinoma, Ewing’s sarcoma), HCR transduction mediates cell death with striking efficacy and selectivity, yielding a 20- to 100-fold reduction in population for cells containing a cognate marker, and no measurable reduction otherwise. Our results indicate that programmable mechanical transduction with all conditional RNAs represents a fundamental principle for exploring therapeutic conditional regulation in living cells.