级别: 硕士生
UID: 129969
精华: 0
发帖: 1820
威望: -5 点
积分转换
愚愚币: 124 YYB
在线充值
贡献值: 0 点
在线时间: 2485(小时)
注册时间: 2019-06-26
最后登录: 2024-11-22
楼主  发表于: 2024-07-01 15:19

 基于保险反欺诈任务的跨表特征工程方法

1 论文标题:基于保险反欺诈任务的跨表特征工程方法

2 作者信息:董今妮, 邓 潇, 那崇宁, 杨 耀, 陈 奎*:之江实验室,浙江 杭州

3 出处和链接:董今妮, 邓潇, 那崇宁, 杨耀, 陈奎. 基于保险反欺诈任务的跨表特征工程方法[J]. 人工智能与机器人研究, 2024, 13(2): 467-477. https://doi.org/10.12677/AIRR.2024.132048

4 摘要:特征工程是使用机器学习技术解决场景任务过程的核心环节,特征工程的质量决定了模型效果的上限。本文将聚焦汽车保险反欺诈任务,研究跨表特征工程技术,解决汽车保险反欺诈过程中的数据表格聚合和高效特征挖掘问题,用于支撑下游反欺诈建模任务。目前,单表的特征工程算法较为成熟,而跨表的特征工程算法相对较少。相比于单表特征工程,多表之间的特征衍生所涉及的特征数目更多,更容易出现特征爆炸。针对这一问题,我们提出了xDFS方法,在DFS (Deep Feature Synthesis)方法上进行优化,引入对单表的统计分析过程,避免了DFS在数据预处理阶段的特征拆分,利用xgboost模型计算特征衍生的最优组合,进而解决了跨表特征衍生过程中的特征爆炸问题。在实验过程中,我们将xDFS方法在两个公开数据集和一个车险数据集上进行测试,发现当衍生特征深度较深时,DFS出现特征爆炸问题,而xDFS均未产生特征爆炸问题。
分享:

愚愚学园属于纯学术、非经营性专业网站,无任何商业性质,大家出于学习和科研目的进行交流讨论。

如有涉侵犯著作权人的版权等信息,请及时来信告知,我们将立刻从网站上删除,并向所有持版权者致最深歉意,谢谢。